Strong Convergence of the Finite Element Method with Truncated Noise for Semilinear Parabolic Stochastic Equations
نویسندگان
چکیده
We consider a semilinear parabolic PDE driven by additive noise. The equation is discretized in space by a standard piecewise linear finite element method. We show that the orthogonal expansion of the finite-dimensional Wiener process, that appears in the discretized problem, can be truncated severely without losing the asymptotic order of the method, provided that the kernel of the covariance operator of the Wiener process is smooth enough. For example, if the covariance operator is given by the Gauss kernel, then the number of terms to be kept is the quasi-logarithm of the number of terms in the original expansion. Then one can reduce the size of the corresponding linear algebra problem enormously and hence reduce the computational complexity, which is a key issue when stochastic problems are simulated.
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملA Stochastic Finite Element Method for Stochastic Parabolic Equations Driven by Purely Spatial Noise
We consider parabolic SPDEs driven by purely spatial noise, and show the existence of solutions with random initial data and forcing terms. We perform error analysis for the semi-discrete stochastic finite element method applied to a class of equations with self-adjoint differential operators that are independent of time. The analysis employs the formal stochastic adjoint problem and the corres...
متن کاملSemilinear parabolic partial differential equations—theory, approximation, and application
We present an abstract framework for semilinear parabolic problems based on analytic semigroup theory. The same framework is used for numerical discretization based on the finite element method. We prove local existence of solutions and local error estimates. These are applied in the context of dynamical systems. The framework is also used to analyze the finite element method for a stochastic p...
متن کاملWeak Convergence of Finite Element Approximations of Linear Stochastic Evolution Equations with Additive Noise Ii. Fully Discrete Schemes
We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element met...
متن کامل